
On Tableau Constructions for Timing Diagrams

Kathi Fisler

Department of Computer Science

Rice University

6100 S. Main, MS 132

Houston, TX 77005-1892

kfisler@cs.rice.edu

Abstract

Designers often cite unfamiliar notation as one obsta-
cle to wider acceptance of formal methods. Formal-
izations of design notations, such as timing diagrams,
promise to bridge the gap between design practice
and formal methods. How to use such formaliza-
tions e�ectively, however, remains an open question.
Developing new tools around design notations might
provide better support for reasoning at the level of
the preferred notations. On the other hand, trans-
lating the formalizations into established notations
enables leveraging o� of existing tools. This decision
of whether to treat design notations as interfaces de-
pends largely on computational tradeo�s. This paper
explores this issue in the context of specifying proper-
ties for automata-theoretic veri�cation using timing
diagrams. Automata-theoretic algorithms perform a
tableau construction to convert properties into B�uchi
automata. We contrast direct compilation of timing
diagrams into B�uchi automata with an approach that
uses linear-time temporal logic (LTL) as an interme-
diate language during translation. Direct compila-
tion generally produces much smaller automata and
scales signi�cantly better with variations in key tim-
ing diagram parameters. We attribute this to combi-
nation of a correspondence between timing diagrams
and weak automata and certain shortcomings in cur-
rent LTL-to-B�uchi algorithms.

1 Introduction

Computer-aided veri�cation uses techniques from
logic and mathematics to prove whether design mod-
els satisfy certain properties. Although these tech-
niques have been used successfully on several siz-
able examples, many designers are reluctant to adopt
them. One frequently cited problem is the notation
that veri�cation tools employ [9]. Veri�cation tech-
nologies are grounded in formal logic. Accordingly,
most tools use their underlying logics as property
speci�cation languages. For example, model checkers
employ temporal logics, while theorem provers use
various
avors of higher-order logic. In contrast, de-
signers use a wide array of notations, including circuit
diagrams, timing diagrams, state machines, VHDL
and Verilog. This rich array of representations, some
of them diagrammatic, stands in stark contrast to the
monolithic textual logics of veri�cation tools.

Bridging this gap requires veri�cation tools that
support notations that are more familiar to designers.
One approach is to develop new tools and algorithms
which support design notations directly [3]. Another
is to create interfaces from design notations to exist-
ing languages [1, 8]; this leverages o� existing tool
development e�orts.1 Which approach yields more
eÆcient algorithms is an open question. There may
exist algorithms for model checking timing diagrams,
for example, that outperform those for the temporal

1Many e�orts (other than those cited) are ad-hoc, however,
because they do not formalize the design notations.

logics into which we might translate timing diagrams.
Understanding these tradeo�s requires studies of the
logical nature of design notations and their role in
veri�cation algorithms.

This paper explores these tradeo�s in the context
of compiling timing diagrams to B�uchi automata.
Automata-theoretic veri�cation tools, which support
linear-time logics such as LTL, operate at the level
of automata. Using such tools on timing diagrams
requires algorithms for compiling timing diagrams to
B�uchi automata. We compare two compilation meth-
ods, one which compiles timing diagrams directly into
B�uchi automata and one which translates timing di-
agrams into LTL and then uses existing algorithms
for compiling LTL into B�uchi automata. Our results
show that the direct approach produces far smaller
machines even on simple examples. This appears due
to a combination of structural properties of the au-
tomata that capture timing diagrams and shortcom-
ings in existing LTL-to-B�uchi translation algorithms.

Section 2 presents an overview of automata-
theoretic veri�cation. Section 3 describes timing dia-
grams and linear-time temporal logic, the two nota-
tions used in this paper. Section 4 presents our algo-
rithms for compiling timing diagrams into LTL and
B�uchi automata. Section 5 presents an experimental
comparison of the two approaches to obtaining B�uchi
automata from timing diagrams. Section 6 discusses
the experimental results and their implications for
veri�cation research.

2 Automata-Based Veri�cation

Automata-theoretic veri�cation views both systems
and properties as �nite-state automata [12, 14]. Ver-
ifying whether a system satis�es a property is analo-
gous to asking whether the property automaton ac-
cepts the language generated by the system. In other
words, for a system S and a property P , veri�cation
reduces to a language containment question of the
form L(S) � L(P), where L denotes the language of
an automaton. This is equivalent to asking whether
L(S) \ L(P) = ;. In practice, automata-theoretic
veri�cation tools implement the latter; they intersect
the automaton for the negation of the property with

the automaton for the system and check whether the
language of the product automaton is empty.

Many other veri�cation problems can be expressed
in terms of operations on languages. Property de-
composition is one example. Properties often prove
intractable to verify because they require too many
computational resources, such as time or memory.
One can approach such cases by decomposing the
original property into a set of simpler properties, each
of which is tractable to verify. If the simpler prop-
erties collectively imply the original property, then
verifying each simple property independently is suf-
�cient to verify the original property. To support
decomposition, veri�cation tools must check whether
one set of properties implies another. If a property P
is decomposed into properties P1; : : : ; Pk , this check
reduces to L(P) � L(P1) \ : : : \ L(Pk).
Both of these checks are decidable for a large class

of veri�cation problems. Implementing them requires
procedures to obtain two kinds of automata: those
that accept the language of a given property and
those that accept the language of the negation of a
given property. This project investigates both prob-
lems in the context of timing diagrams.

3 Timing Diagrams and LTL

3.1 Timing Diagrams

Timing diagrams express patterns of value changes
on signals. In addition, they express precedence and
synchronization relationships between changes, and
timing constraints between changes. As part of our
overall research program, we have developed a logic
of timing diagrams [5]. This section describes the
portion of the logic that is relevant to this paper.

Figure 1 provides a sample timing diagram that
will serve as our running example. Variables a, b,
and c name boolean-valued signals. To the right of
each name is a waveform depicting how the variable's
value changes over time. For example, b transitions
from low to high, then later returns to low. We inter-
pret low as logical false and high as logical true. Ar-
rows indicate temporal ordering between transitions;
for this paper, we assume that timing diagrams spec-

[1,3]
>2[1,3]

a

b

c

p0 p1 p2 p4p3 p5 p6

a 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
b 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0
c 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

Figure 1: A timing diagram and an illustration of its semantics.

ify a total ordering on the transitions through arrows
and ordering within waveforms. Annotations of the
form [l; u] on the arrows indicate lower and upper
bounds on the time between the related transitions; l
is a natural number and u is a natural number or the
symbol 1.2 The labels at the bottom, referred to as
time points , are for explanatory purposes and are not
part of the timing diagram; intuitively, there is one
time point for each transition in the diagram, plus one
for each of the endpoints of the diagram. The portion
of the diagram between each pair of time points is an
interval; interval Ij spans from time point pj to pj+1.

Since timing diagrams express sequences of values
of variables over time, an appropriate semantic model
for them must do the same. Formal languages, which
are sets of sequences over a given alphabet, suggest
such a model. Our semantics considers �nite or in�-
nite words over an alphabet consisting of all possible
assignments of boolean values to the names labeling
waveforms. Intuitively, a word models a timing di-
agram when the transition patterns in the diagram
re
ect the changes in values assigned to names in the
word. A timing diagram language is any set of words
such that every word in the set models the timing di-
agram. This paper provides an intuitive description
of the semantics; the full details appear elsewhere [5].

Consider the timing diagram and word in Figure 1.

2The full logic supports richer bounds with variables [5].

The word appears in tabular form: the waveform
names label the rows and the indices into the word
label the columns. Each cell in the table indicates
the value on the corresponding signal at the corre-
sponding index. Symbols 0 and 1 denote false and
true, respectively. The two lines directly beneath the
table indicate two separate assignments of indices to
time points, as explained shortly.

Intuitively, the semantics walks along a word look-
ing for indices that satisfy each time point. An index
satis�es a time point if the values assigned to each
variable correspond to those required by the transi-
tions at the time point; satisfaction relies on both
the current index and its immediate successor. For
example, in Figure 1, time point p1 contains a rising
transition on signal a; index d satis�es p1 if d assigns
value 0 to a and index d+ 1 assigns value 1 to a.

For the word and timing diagram in Figure 1, in-
dex 0 satis�es the rising transition on a. The walk
now searches for an index containing a rising tran-
sition on b; index 1 meets this criterion. When the
walk locates the rising transition on c in index 2, the
semantics checks whether the located indices respect
the timing constraint between the transitions on b

and c. The two transitions occurred one index apart,
which is valid. Continuing the walk locates time point
p4 at index 3 and time point p5 at index 5. The �rst
row below the table shows this assignment of time

points to indices. The second row shows another as-
signment, starting from index 4. This walk fails, be-
cause the distance between the indices satisfying p2
and p4 is larger than 3, the maximum allowed by the
time bound on the arrow from the rising transition
on b to the falling transition on c. The semantics al-
ways checks the �rst occurrence of a transition that
it �nds once it begins searching for it. The formal
semantics [5] de�nes this precisely.
Three other aspects of our semantics are relevant:

� Timing diagrams express assume-guarantee re-
lationships; we specify some pre�x of the time
points as the assume portion, and only check the
entire diagram when we locate indices satisfying
the assume portion. In our example, taking the
assume portion to be time points p0 and p1, we
would search for the entire diagram only if an
index re
ects a rising transition on a.

� We view timing diagrams as invariants, mean-
ing that we attempt to satisfy the timing dia-
gram from every index which satis�es the assume
portion. In our example, we would search from
every index containing a rising transition on a,
namely indices 0 and 4, as in our demonstration.

� A parameter over the timing diagram indicates
which segments of waveforms should be matched
exactly within words; the rest are treated as
don't-cares. Segments to be matched exactly
are called �xed-level constraints. For example,
we could require a to remain high until the rising
transition on c by putting a �xed-level constraint
on a between time points p1 and p4.

Index satisfaction and �xed-level constraints are
simply constraints on the values of particular vari-
ables; each constraint is a conjunction of literals cap-
turing the values required on each variable. A �xed-
level constraint requiring a to be low and c to be high
would be the conjunction :a^c. The actual conjunc-
tions are irrelevant to the algorithms in the rest of the
paper. We therefore describe our algorithms in terms
of the following symbols:

� Ai: the �xed-level constraint in interval Ii.

� APiinit: the �rst index required to satisfy the
transition at time point i.

� APi: the second index required to satisfy the
transition at time point i.

� Ti: The conjunction APiinit ^ XAPi, which uses
the temporal logic next-time operator to capture
the requirements for satisfying a transition.

3.2 Linear-time Temporal Logic

Like timing diagrams, linear-time temporal logic de-
scribes patterns of changes in variables over sequences
of assignments. LTL is a propositional temporal
logic [13], de�ned relative to a �nite set of propo-
sitions P . The formulas of LTL include P and are
closed under unary operators : and X (next), and bi-
nary operators _ and U (until). Intuitively, X' says
that ' holds in the next state, while 'U says that '
holds in every state until holds, and eventually
holds. Other temporal operators, such as G (some-
thing holds in all states) are de�ned in terms of U.
Formally, LTL formulas are given semantics relative
to sequences of assignments to P . An in�nite word
� = x0x1 : : : is a sequence of elements of 2P . �i de-
notes the suÆx of � starting at xi. A word � models
formulas according to the following de�nition:

� � j= q i� q 2 x0, for q 2 P ,

� � j= :' i� not � j= ',

� � j= ' _ i� � j= ' or � j= ,

� � j= X' i� �1 j= ',

� � j= 'U i� there is an i � 0 such that �1 j=

and �j j= ' for all 0 � j < i.

A language models a formula i� every word in the
language models the formula.

4 Tableau Constructions

As discussed in Section 2, automata-theoretic veri�-
cation tools compile formulas into B�uchi automata.
As LTL model checking uses the automata-theoretic
framework, several algorithms exist for compiling

LTL formulas into B�uchi automata [2, 7]; these algo-
rithms use a technique called tableau construction.
The timing diagram semantics e�ectively de�ne a
B�uchi automaton accepting a timing diagram lan-
guage. Thus, we have two possible routes to compil-
ing timing diagrams into B�uchi automata, as shown
in the diagram below: compile the timing diagram
directly to a B�uchi automaton which corresponds to
the semantics, or translate the timing diagram into
LTL and use existing LTL-to-B�uchi algorithms. The
second approach re
ects the view of timing diagrams
as visual interfaces for temporal logics [1].

existing
algorithm

our
translation

Buchi
..

TD LTL

semantics

We would like to compare the B�uchi automata aris-
ing from these two approaches. Is one substantially
larger than the other? Size is important because this
form of veri�cation computes the cross-product of
the automata representing the design and the prop-
erty. Does one approach yield a B�uchi automaton
that is more amenable to veri�cation than the other?
Some veri�cation heuristics work only on property
automata with particular structural features. An-
swers to these questions help determine whether ver-
i�cation tools can safely treat timing diagrams as in-
terfaces to LTL expressions without having an ad-
verse e�ect on the veri�cation process.

Our translations from timing diagrams to each of
LTL and automata rely on the same intermediate rep-
resentation, a form of abstract state machine. States
in this machine record which interval they correspond
to, their transitions to other abstract states, and a
set of labels which provide information to the back-
end tools. The abstract machine captures one pass
or walk of the timing diagram semantics, leaving the
backend tools to support repetitions as necessary.

4.1 Generating the Abstract Machine

Generating an abstract machine from a given tim-
ing diagram proceeds in two steps. First, we need to

I1
1+

I2 I3
1 1
1 2
2 1

I4
2+

Figure 2: Step distribution tables for the example
timing diagram.

calculate the possible numbers of steps that a valid
word can spend in each interval. We partition the
time points into cells such that time points i and j

are in the same cell i� there is an arrow spanning
intervals i and j: for our example timing diagram,
the cells are f0g, f1g, f2; 3g, f4g, and f5g. For each
cell, we generate a table showing the possible combi-
nations of steps allowed in each interval. Each row
of the table provides one distribution of the time al-
lowed by the bounds across the corresponding inter-
vals; if the total amount of time is a lower bound,
the value in the last column of the table is marked
with a +. Figure 2 shows the tables for our example
diagram. They say that a valid word must contain at
least one letter in the �rst interval (1+ in the �rst ta-
ble), some combination of 2 or 3 letters in the interval
between time points 2 and 4 (the middle table), and
at least two letters in interval I4. We generate the
tables using a straightforward procedure for calculat-
ing distributions across variables. We then eliminate
distributions that violate some timing constraint; the
example diagram, for example, allows the arrow from
the rising transition on b to the rising transition on
c to last 3 steps, but doing so would violate the con-
straints of the edge from the rising transition on b

to the falling transition on c. The tables in Figure 2
contain no row allowing 3 steps in interval I2.

Next, we generate abstract states from the cells
and tables. Each abstract state contains the time
point it corresponds to, a set of transitions to other
abstract states, and a set of labels (which we de-
scribe shortly). We generate a �nal state (labeled
�nal) with a self-transition; this corresponds to the
maximal time point. We also generate two abstract
states with transition to the �nal state for each time
point in the assume portion: one labeled PM for pat-

assume
can
start
end

0

0

PM

can
start
end

1

must
end

2

can
start

3

can
start

2

must
end

3

start
cannot

4

start
end

must
3

can
end

4

start
end

must
5

final

Figure 3: The abstract machine for the example timing diagram.

tern mismatches and one labeled CV for constraint
violations; these capture violations of the timing dia-
gram patterns in the assume portion. The generation
method processes the cells in reverse order. For each
cell, we generate a set of states, designating one as the
initial state for the cell, as follows. If there is no table
for the cell, we generate one abstract state with two
transitions: one to itself and one to the initial state
for the cell containing the next time point. If the time
point is in the assume portion, the abstract state also
contains a transition to the pattern-mismatch state
for the corresponding time point.

If there is a table for a cell, we must generate se-
quences of states that count steps in the intervals as
indicated in the tables. Rather than generate these
sequences independently, however, we share states at
the pre�xes of the sequences when possible. All se-
quences will share at least one common pre�x state;
this is the initial state for the cell. For the exam-
ple timing diagram, all rows for cell f2; 3g require at
least one state in interval 2. Each state contains a
transition to the next state in the sequence; states
in common pre�xes may have transitions to multiple
suÆxes. In addition, if the last entry in a row is an-
notated with +, the �nal state in the sequence for
the row contains a self-loop. If the cell is in the as-
sume portion, each state also contains transitions to
the pattern-mismatch and constraint-violation states
for the corresponding time points. Figure 3 shows
the abstract machine corresponding to our example
timing diagram. We have explained the structure of
this machine; we now describe the labels.

Each state corresponding to a time point in the

assume portion receives the label assume. For each
state other than the �nal, pattern-mismatch, and
constraint-violation states, we add all labels from the
following list for which the state satis�es the indi-
cated constraints relative to the structure of the tran-
sition system; let B be a state at time point pi:

� start: no other state for time point pi reaches B;

� end: B reaches no other state for time point pi;

� can: B has successors for time points pi and pi+1;

� cannot: all successors are for time point pi;

� must: no successor is for time point pi.

The labels start and end indicate the �rst and last
states for each corresponding time point; can, cannot,
and must indicate whether a word can, cannot, or
must advance to the next time point from this state.
While some of these labels have overlapping meaning
(all must states are end states, for example), no two
labels are equivalent.

4.2 Generating LTL

This section generates an LTL formula corresponding
to one pass of the timing diagram semantics. Wrap-
ping the formula in LTL operator G yields the invari-
ant formula. The procedure follows the structure of
the abstract machine. There are two steps in gener-
ating the LTL for a given abstract state: generating
the propositional expression that captures the �xed-
level constraints for the state and connecting this ex-
pression with those for other states using temporal

([(A0 ^ :T0) U (A0 ^ T0)]!
[(A0 ^ :T0) U
(A0 ^ T0 ^
X[(A1 ^ :T1) U
(A1 ^ T1 ^ X((A2 ^ T2 ^ X((A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)])) _

(A3 ^ :T3 ^ X(A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)]))))) _
(A2 ^ :T2 ^ X(A2 ^ T2 ^ X(A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)]))))))])])

Figure 4: LTL generated for example timing diagram

operators. The expression for a state is the �xed-
level constraint Ai; if the state is the �rst or last in
a time point, we conjoin Ai with APi or APi+1init,
respectively. The temporal operators are based on
the transition structure of the abstract machine.
Formally, procedure GenLTL(B) produces the LTL

for abstract state B as follows, where R is the tran-
sition relation of the abstract machine. For abstract
states B without self-loops, GenLTL(B) produces

Ai ^ Ti ^
_

B02R(B)

X(GenLTL(B0)):

For abstract states B with self loops, GenLTL(B) is

[(Ai ^ :Ti) U (Ai ^ Ti ^
_

B02R(B)

X(GenLTL(B0)))]:

The Ti's require the expression to match the �rst
available transition to the next time point. To handle
the assume portion, the algorithm generates LTL for
the restriction of the abstract machine to the assume
portion and forms an implication from this formula to
the LTL for the entire diagram. This follows the in-
tuitive semantics of timing diagrams. Figure 4 shows
the resulting LTL for our running example. The con-
trast between the formula and the original timing dia-
gram motivates designers' frustrations with common
veri�cation notations.

4.3 Generating B�uchi Automata

A B�uchi automaton is a tuple hQ; q0; R; L;Fi where
Q is a set of states, q0 is the initial state, R � Q�Q
is the transition relation, L indicates propositions

that are true in each state, and F � Q is a set
of fair states. The abstract machine resembles a
B�uchi automaton; however, it does not capture a
timing diagram because it does not enforce match-
ing the �rst occurrences of transitions. The B�uchi
automaton states enforce this by examining proposi-
tions APi+1init and APi+1, which indicate when tran-
sitions should occur. These states also refer to the
�xed-level constraint Ai.

Monitoring APi+1init and APi+1 implies that an
abstract state can expand into four B�uchi states (Ai
must hold in each; the pattern-mismatch states ac-
count for when Ai does not hold). The number may
be more or less depending on the abstract state's
labels. Regardless of the labels, only a few com-
binations of propositions arise in practice. Table 1
(left) lists templates of the generated B�uchi states.
For each state, we list the propositions that are true
in that state and a set of labels. These labels are
not part of the B�uchi automaton; the algorithm uses
them to create transitions between states. The labels
can be divided into two sets, depending upon whether
they contain this; we explain the distinction shortly.

The B�uchi automaton generator converts abstract
state B into B�uchi automaton states b1; : : : ; bm in
two steps. First, it creates the template states indi-
cated in Table 1 (right). Second, it adds the outgoing
transitions for each bk. These outgoing transitions
depend on B's labels and whether bk outputs propo-
sition APi+1init. This proposition matters because
it indicates that bk could recognize the start of the
next time-point. Any transitions from bk to states
outputting proposition APi+1 must be to states cor-
responding to the next time-point.

Propositions Incoming Labels
S1 Ai, APi+1init, APi+1 this-tp, this-tp-trans
S2 Ai, :APi+1init, APi+1 this-tp, this-tp-trans
S3 Ai, APi+1init, :APi+1 this-tp, this-tp-no-trans
S4 Ai, :APi+1init, :APi+1 this-tp, this-tp-no-trans
S5 Ai, APi+1init, APi tp-start

S6 Ai, :APi+1init, APi tp-start

S7 :APi cv-no-trans

S8 Ai, APi cv-trans

S9 :Ai pv-this

S10 :Ai, APi pv-on-trans

S11 :Ai, :APi pv-this-no-trans

S12 �nal

Type Start? States
cannot yes S5, S6
cannot no S1, S2, S3, S4
must yes S5 plus this-tp label
must no S1, S3
can yes (ex. p0) S1, S2, S3, S4, S5, S6
can no or p0 S1, S2, S3, S4
CV S7, S8
PM S9, S10, S11
�nal S12

Table 1: Tables de�ning translation of abstract states to B�uchi states.

Next
Type Init? Outgoing Labels
can yes tp-start, this-tp-no-trans

pv-this-no-trans, pv-on-trans
can no this-tp pv-this

cannot yes this-tp-no-trans, pv-this, cv-trans
cannot no this-tp, pv-this, cv-trans
must tp-start, pv-on-trans, cv-no-trans

Table 2: Determining transitions between states.

More speci�cally, we connect the transitions for bk,
generated from abstract state B, according to the fol-
lowing algorithm: Let c1; : : : ; cn be the states that
expand all successors of B in the abstract machine.
Let hk be the set of labels for bk according to Ta-
ble 2. For each cj , add a transition from bk to cj i�
cj comes from the same (resp. a di�erent) time point
as bk and the incoming labels for cj contain some
this (resp. non-this label) label from hk. The fair
states consist of the state labeled �nal and all states
expanding abstract states labeled assume.

As an example, let B be the rightmost abstract
state for time point 4 from Figure 3. The following
diagram shows the expansion. The four states in the
dashed box correspond to B. Table 1 (right) tells
us to create these states because B matches the sec-
ond can line. State S5 expands the abstract state for

time point 5; we include it to illustrate the transition
connection procedure.

S2 S1

S3S4

S5

Tables 1 and 2 determine the outgoing transitions
for each state in the dashed box. For example, S3
matches the �rst row in Table 2 because B has label
can and S3 outputs APi+1init. Thus, it needs a tran-
sition to each state in the dashed box with incoming
label this-tp-no-trans (states S3 and S4 by Table 1
(left)) and each state outside the box with label tp-
start (state S5). We ignore the pv labels since there
are no PM states for time points 4 or 5. A similar
process yields the transitions for the remaining states.

Having presented algorithms for translating timing
diagrams to both LTL formulas and B�uchi automata,
we need to check whether the derived formulas and
automata correspond on a logical level. Given a tim-
ing diagram D, let DLTL and DBA be the formula
and automaton derived for D, respectively. We have
proven that L(DBA) modelsDLTL according to LTL's
semantics. As a sanity check on this result, we con-
structed an LTL formula capturing the structure of
DBA and compared it to DLTL using an LTL equiv-
alence checker [10]. These formulas are equivalent

for a large test suite of timing diagrams, including
those used in our experiments. Thus, we have high
con�dence in the correctness of our translations.

5 Experimental Results

This section compares our DBA automata to those
derived from DLTL using an existing LTL-to-B�uchi
translation algorithm [2] with respect to their num-
bers of states. We do not report running times be-
cause the algorithms have been implemented in dif-
ferent paradigms, which reduces the value of such
�gures; in practice, the direct translations were sub-
stantially faster than the LTL-based translations. We
report two groups of experiments. In the �rst, we
generate automata for one pass of the timing diagram
semantics. In the second, we generate automata for
the negation of timing diagrams when treated as an
invariant. The latter is required to model check tim-
ing diagrams using an automata-theoretic approach.

When comparing how each approach scales with re-
spect to a given timing diagram, there are two classes
of parameters to consider: the values of the lower and
upper time bounds on the edges and the size of the as-
sume portion. While the bounds certainly a�ect the
size of the resulting automata, we conjecture that the
size of the assume portion will be more signi�cant.
Consider the structure of DLTL. As Figure 4 shows,
the subexpression for the assume portion appears on
both sides of the implication in the LTL formula.
LTL-to-B�uchi algorithms normalize formulas before
translation: the normalization process will destroy
the similarities between the two copies of the assume
portion. Our timing diagram to automaton algo-
rithm, in contrast, translates the assume portion only
once. Our experiments use Daniele, Giunchiglia, and
Vardi's LTL-to-B�uchi algorithm, which yields more
compact automata than other algorithms [2].

5.1 Accepting Timing Diagrams

As an initial experiment, consider a very simple dia-
gram with an empty (trivial) assume portion. The
table shows the number of states in the DBA au-
tomaton (column \DBA") and the number of states

obtained compiling DLTL to an automaton (column
\via DLTL"). The �rst two columns vary the bounds.
Each automaton sees constant growth with respect to
increases in the time bounds. This supports our hy-
pothesis that the magnitude of the bounds does not
yield signi�cant di�erences between the two trans-
lation algorithms. Similar experiments on diagrams
with more transitions show similar results: while the
magnitude of the constant di�erence between the two
machines increases slightly on these examples, the
di�erences are still small constants when the assume
portion is empty.

[l,u]
a

b

l u DBA via DLTL

1 1 7 9
2 2 10 12
3 3 14 16
4 4 18 20

1 1 12 17
2 1 12 16
3 1 16 20
4 1 20 24

The picture changes dramatically as the assume
portion grows beyond one transition. Consider a di-
agram with four transitions, as shown below. Each
group of three experiments uses the same bounds and
varies the assume portion size. The di�erence be-
tween assume portion sizes of one and two is substan-
tial in each group. Furthermore, as the bounds in the
assume portion grow, this di�erence appears to grow
exponentially. Growth of each automaton still ap-
pears constant across experiments with the same as-
sume portion size and varying bounds. This supports
our hypothesis that the size of the assume portion is
more important than the size of the bounds. The size
of the bounds appear to matter more in the assume
portion than in the non-assume portion. This makes
sense, as the LTL-to-B�uchi algorithm negates the as-
sume portion to construct the automaton. This nega-
tion creates many disjunctions, which lead to branch-
ing and extra states in the LTL-to-B�uchi translation.
The larger the bounds, the more disjunctions result
from the assume portion.

a

b

c

[l1,u1]

[l2,u2]

[l3,u3]

d

l1 u1 l2 u2 l3 u3 Split DBA DLTL

1 1 1 1 1 1 0 9 9
1 1 1 1 1 1 1 11 25
1 1 1 1 1 1 2 12 119

1 1 2 2 2 2 0 15 13
1 1 2 2 2 2 1 17 29
1 1 2 2 2 2 2 18 123

1 1 3 3 3 3 0 23 19
1 1 3 3 3 3 1 25 35
1 1 3 3 3 3 2 26 129

2 2 1 1 1 1 0 12 11
2 2 1 1 1 1 1 14 27
2 2 1 1 1 1 2 16 319

2 2 2 2 2 2 0 18 15
2 2 2 2 2 2 1 20 31
2 2 2 2 2 2 2 22 323

3 3 1 1 1 1 0 16 14
3 3 1 1 1 1 1 18 30
3 3 1 1 1 1 2 20 666

The LTL-to-B�uchi approach produces smaller au-
tomata than our approach in some cases when the
assume portion is empty. We believe this is due to
a slight di�erence in how we handle relationships be-
tween the symbolic propositions (Ai, etc) in the two
algorithms that would favor the LTL-based approach.

5.2 Rejecting Timing Diagrams

Model checkers require an automaton accepting the
negation of a property. Even though we cannot draw
the negation of a timing diagram as a timing dia-
gram, we can still produce an automaton that ac-
cepts all words that fail to satisfy the timing diagram.
This section compares these automata to those ob-
tained for the expression :GDLTL. We present two
tables: the �rst summarizes experiments on the sin-
gle transition diagram from the previous section and
the second summarizes experiments on the two tran-

sition diagram. As an experiment in how the place-
ment of temporal operators a�ects the construction
of automata from LTL formulas, the �rst table in-
cludes an additional column, \Distrib", for which we
distributed all X operations in DLTL formula over
boolean operators before compiling to an automaton.

l u Split DBA via DLTL Distrib
1 1 0 7 112 199
2 2 0 10 310 588
3 3 0 14 654 1506
4 4 0 18 1307 3077
5 5 0 22 2613 6153

1 1 0 12 295 295
2 1 0 12 382 772
3 1 0 16 705 1596

1 8 0 34 14599 24926
2 8 0 34 14632 25055
3 8 0 34 14728 25461

1 1 1 9 117 210
2 2 1 12 315 599
3 3 1 16 659 1519
1 1 1 14 300 300
2 1 1 14 387 781

l1 u1 l2 u2 Split DBA via DLTL

1 1 1 1 0 8 650
2 2 2 2 0 14 5372
3 3 3 3 0 22 24174

1 1 1 1 0 18 4999
2 1 1 1 0 18 6369
2 1 2 1 0 18 8286

1 1 1 1 1 10 655
1 1 1 1 2 11 658
1 1 1 1 1 20 5004

In these tables, the di�erence between the two algo-
rithms is striking. The direct translation still shows
linear growth as we vary the bounds under a trivial
assume portion. For the �rst section of the �rst table,
the LTL-based algorithm shows exponential growth.
The di�erence between zero and one transitions in the
assume portion is not signi�cant for either algorithm
in the �rst table. Unfortunately, we were unable to

generate the LTL-based automata for larger con�gu-
rations than those shown within a reasonable amount
of time (several hours per construction). However,
the existing results are suÆcient to demonstrate the
drawbacks of the LTL approach to compiling timing
diagrams into automata.

6 Discussion

The data in Section 5 suggest clear di�erences be-
tween our two approaches for compiling timing dia-
grams into B�uchi automata. These di�erences could
be due to the LTL-to-B�uchi automaton translation,
to our timing diagram to LTL translation, or to some
property of timing diagrams that provides an inher-
ent advantage over LTL.

LTL-to-B�uchi algorithms are not canonical, in that
they may produce di�erent automata for logically
equivalent LTL formulas; the Distrib experiments in
the previous section show this. The Daniele et al.

algorithm produces smaller automata than other al-
gorithms because it uses some simple syntactic op-
timization techniques on propositional formulas [2].
More work should be done in this area; our timing
diagrams research has yielded several formulas where
simple manual transformations yielded much smaller
automata from the Daniele et al. algorithm. Algo-
rithms which perform optimizations across temporal
operators are also needed, as our experiments show.

Currently, no known metrics indicate when one
LTL formula will yield a smaller automaton than
another. Therefore, it is possible that a di�erent
translation from timing diagrams to LTL would yield
smaller automata. For several timing diagrams, we
have tried to manually construct LTL formulas that
yield our DBA automata. We have been successful
on occasion by translating the structure of DBA into
LTL. We are still working on such a translation pro-
cedure that acts as a �xpoint over B�uchi automata,
as a means of understanding the LTL-to-B�uchi algo-
rithms better. However, this approach is clearly re-
dundant in practice, as it requires the construction of
DBA. We continue to experiment with other timing
diagram to LTL translation algorithms, particularly
ones which enable sharing of the assume portion.

This project is part of a larger investigation into
whether timing diagrams o�er any computational
bene�ts over existing logics (including LTL) in veri-
�cation contexts [4]. We have identi�ed several dif-
ferences between the two notations. Full timing di-
agrams and LTL have incomparable expressive pow-
ers [5] (this paper uses only a subset of timing di-
agrams). Timing diagrams enable sharing of com-
mon subexpressions to a greater extent than LTL.
The LTL formula in Figure 4, for example, dupli-
cates subexpressions across its disjuncts; these ex-
pressions correspond to entire suÆxes of the timing
diagram. LTL does not appear to provide a way to
avoid this duplication. However, it is not yet clear
whether these duplicated expressions contribute to
the explosion in the generated B�uchi automata.

The most interesting distinction that we've discov-
ered between timing diagrams and LTL arises from
the structure of the B�uchi automata corresponding to
each notation. Our timing diagram to B�uchi trans-
lation always produces a particular structure of au-
tomaton known as a weak automaton [11]. An au-
tomaton with states Q and fair set F is weak if there
exists a partition of Q into disjoint sets Q1; : : : ; Qn

such that (1) each Qi is either contained in F or is
disjoint from it, and (2) the Qi's are partially ordered
so that there is no transition from Qi to Qj unless
Qi � Qj . Weak automata have several attractive
features in the context of veri�cation [11]; for exam-
ple, symbolic cycle detection is e�ectively linear in
weak automata, whereas existing algorithms for the
general case are quadratic [6].

Another feature of weak automata is important to
our study of timing diagrams: complementation of
weak automata requires only complementation of the
fair set F ; the structure of an automaton and its
complement are otherwise identical. In Section 5, we
explored translations of timing diagrams and their
negations to B�uchi automata. Our direct translation
produces the same size automaton for a given timing
diagram under each experiment because we exploit
this feature of weak automata.3 LTL-to-B�uchi algo-
rithms do not currently consider weak automata; this
is an open problem as many LTL formulas do not cor-

3We require one extra transition to handle the invariant.

respond to weak automata. When we use LTL as an
intermediate language, the B�uchi automata for the
negated timing diagrams are much larger than in the
non-negated case. This is partly due to the struc-
ture of the LTL formulas corresponding to timing
diagrams. As Figure 4 shows, LTL formulas corre-
sponding to timing diagrams involve disjunctions of
long sequences of conjunctions and temporal opera-
tors. The negation of such a formula contains many
more disjunctions than the original formula. Disjunc-
tions force branching and extra states in B�uchi au-
tomata. It is therefore not surprising that the au-
tomata for the negated timing diagrams are so much
larger than those for the one-pass timing diagrams.
In summary, many factors in
uence the size of the

automata obtained when treating timing diagrams
as an interface to LTL. These factors suggest a host
of research problems in veri�cation. We fully ex-
pect that improved LTL-to-B�uchi algorithms would
reduce the sizes of automata generated in our exper-
iments. Until researchers develop such algorithms,
however, direct compilation of timing diagrams to
B�uchi automata appears a better approach for veri-
�cation applications.

References

[1] Damm, W., B. Josko and R. Schl�or. Speci�-
cation and veri�cation of VHDL-based system-
level hardware designs. In Egon B�orger, edi-
tor, Speci�cation and Validation Methods, pages
331{409. Oxford Science Publications, 1995.

[2] Daniele, M., F. Giunchiglia and M. Y. Vardi. Im-
proved automata generation for linear temporal
logic. In Proc. 11th International Conference on

Computer-Aided Veri�cation. 1999.

[3] Dillon, L., G. Kutty, L. Moser, P. Melliar-Smith
and Y. Ramakrishna. A graphical interval logic
for specifying concurrent systems. Technical re-
port, UCSB, 1993.

[4] Fisler, K. Diagrams and computational eÆcacy.
In review, Proc. of the CSLI Workshop on Logic,
Language, and Information, October 1999.

[5] Fisler, K. Timing diagrams: Formalization and
algorithmic veri�cation. Journal of Logic, Lan-

guage, and Information, 8:323{361, 1999.

[6] Fisler, K., R. Fraer, G. Kahmi, M. Y. Vardi and
Z. Yang. A new symbolic cycle detection algo-
rithm. In preparation, March 2000.

[7] Gerth, R., D. Peled, M. Y. Vardi and P. Wolper.
Simple on-the-
y automatic veri�cation of linear
temporal logic. In Proceedings of Protocol Spec-

i�cation, Testing, and Veri�cation, pages 3{18,
August 1995.

[8] Grass, W. et al. Transformation of timing dia-
gram speci�cations into VHDL code. In Proceed-
ings of Computer Hardware Description Lan-

guages and Their Applications, pages 659{668,
August 1995.

[9] Heitmeyer, C. On the need for 'practical' for-
mal methods. In Proc. 5th Intl. Symposium on

Formal Techniques in Real-Time and Real-Time

Fault-Tolerant Systems, pages 18{26. Springer-
Verlag, 1998.

[10] Janssen, G. PTL: A propositional logic
tautology checker. Available online from
http://www.ics.ele.tue.nl/es/research/fv/

research/research index.shtml.

[11] Kupferman, O. and M. Y. Vardi. Freedom,
weakness, and determinism: From linear-time to
branching-time. In International Conference on

Logic in Computer Science, 1998.

[12] Kurshan, R. P. Computer-Aided Veri�ca-

tion of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press,
1994.

[13] Pnueli, A. The temporal semantics of concurrent
programs. Theoretical Computer Science, 13:45{
60, 1981.

[14] Vardi, M. Y. and P. Wolper. An automata-
theoretic approach to automatic program veri-
�cation. In Proceedings of the First IEEE Sym-

posium on Logic and Computer Science, 1986.

